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Mécanique des fluides compressibles 

Exercice 7.9 
De l’air s’écoule dans une conduite rectiligne à une température de 300 K,  une pression de 1 atm, et une 

vitesse de 60 m/s. A un instant particulier, une vanne est fermée en bout de conduite. Un choc remonte alors la 

conduite. Trouver la vitesse du choc ainsi que la température et la pression derrière le choc (cad entre le choc 

et la vanne). 

 

 

 

Exercice 7.10 
Deux ondes de chocs se suivent (voir schéma ci-dessous). En utilisant les principes associés aux ondes de chocs, 

dire si au cours du temps l’écart entre les deux chocs augmente, diminue, ou reste le même. 
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Exercices Complémentaires 

Exercice 7.11 
Tube à choc 

Un tube à choc est une conduite cylindrique constitué de deux parties contenant différents gaz: une partie 

remplie du « driver gas » (gaz d’entraînement) et une autre de « test gas » (gaz d’essai). Le gaz d’entraînement 

est porté à très haute pression (par un compresseur ou un piston). Un diaphragme sépare les deux portions de 

gaz. Le diaphragme peut être brisé par une impulsion électrique ou par simple effort mécanique. Quand le 

diaphragme se brise, une onde de choc est générée à cause de la différence de pression entre les deux gaz, et 

se propage dans le gaz d’essai (d’autres phénomènes se produisent, comme la formation d’une onde de 

détente se propageant en sens opposé dans le gaz d’entraînement, ainsi que le déplacement de l’interface 

entre les deux gaz). 

 

 

 

 

 

 

a. Avec la théorie des écoulements compressibles instationnaires, il est possible de montrer qu’il existe 

une relation entre le nombre de Mach du choc Ms (rapport de sa vitesse us et de la vitesse du son dans 

le gaz d’essai), les pressions et vitesses du son initiales dans le gaz d’essai (p1, a1) et dans gaz 

d’entraînement (p4, a4) : 
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Montrer que pour un rapport de pression très élevé, on a : 
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Enoncer ainsi les conditions sur le gaz d’entraînement permettant de générer un choc de grande 

intensité (Ms grand). 

Application  numérique (tube à choc T5, Caltech):  

 Gaz d’entraînement : hélium, p4 = 110 MPa, T4 = 4'600 K (valeurs obtenues par compression 

par piston) ; 

 Gaz d’essai : air, p1 = 90 kPa, T1 = 300 K (on prendra 1.4air const   ). 

 

Trouver le nombre de Mach du choc et sa vitesse, ainsi que la vitesse du gaz (d’essai) et ses conditions 

thermodynamiques juste derrière le choc (attention : ce ne sont pas les conditions d’indice « 4 »). 

Gaz d’entraînement Gaz d’essai 

Interface 

Gaz d’entraînement Gaz d’essai 

Diaphragme 

p4, T4 p1, T1 
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b. Le choc arrive en fin de conduite et est réfléchi. La zône entre le choc et la fin de conduite peut être 

utilisée comme « réservoir » pour une tuyère hypersonique. 

 

 

 

 

 

Trouver la pression et la température de réservoir p0 et T0 (encore une fois, on suppose que   reste 

constant, égal à 1.4 ; il faudrait le faire varier avec la trempérature…). 

Exercice 7.12 
Explosion 

1. Une explosion génère une onde de choc sphérique dont le rayon R grandit en fonction du temps dans 

une atmosphère au repos (de masse volumique ρ0). 

a. Si les paramètres essentiels caractérisant l’onde de choc sont son rayon, la masse volumique 

de l’air ambiant, l’énergie E de l’explosion (en joule), et l’instant d’observation t, utiliser une 

analyse dimensionnelle (théorème de Pi) pour montrer: 
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Une analyse plus étendue montre que la constante est proche de 1. 

b. Montrer à partir de cette expression que la vitesse de l’onde de choc est : 
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c. A partir de la relation du rapport de pression en fonction du nombre de Mach pour un choc 

normal, montrer que la pression derrière un choc fort (en négligeant la pression 

atmosphérique) est donnée approximativement par : 
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d. Exprimer cette pression en fonction du rayon du choc et de l’énergie de l’explosion: 
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e. Evaluer p pour les cas suivants (on prendra 1 gramme de TNT égal à 4'184 joule) : 

i. Grenade à main : E = 57 grammes de TNT, R = 10 m, R = 100 m, et R = 1 km 

ii. Bombe à hydrogène : E = 25 mégatonnes de TNT, R = 1 km, R = 10 km et R = 100 km 

iii. Impact météoritique de Chicxulub dans le Yucatan il y a 65 millions d’années : E = 96 

millions de mégatonnes de TNT, R = 1'000 km et R = 10'000 km (bien que, vu l’épaisseur 

faible de l’atmosphère, l’onde de choc n’était sans doute pas sphérique). 

  

Gaz d’essai « Réservoir » 
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Exercice 7.13 
Epaisseur d’une onde choc droite (on omettra l’indice « n » pour alléger la notation) 

En faisant l’hypothèse que le fluide est continu à travers une onde de choc (hypothèse osée !), il est possible 

d’écrire l’équation de Navier-Stokes le long de l’écoulement (coordonnée x) : 
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où w est la vitesse de l’écoulement, p la pression, et  
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avec   la viscosité (dynamique) et 
v  la viscosité de volume. 

a. Montrer que l’on peut intégrer l’équation de Navier-Stokes et obtenir : 
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Montrer ainsi que l’on a : 
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b. Pour un profil de vitesse dans le choc donné sur le schéma ci-dessous, on peut estimer l’épaisseur du 

choc   en considérant la valeur de la pente du profil de vitesse au milieu du choc : 

 
 

1 2

2 1

2

w w
w

ww wdw

dx 



 

 
. 

Montrer alors que : 

   
  1 21 1 1

2

4
'

3 2
w w

w

w w
w p p  


  


 

  

 

 

 

 

 

 

 

 

  

 

c. Dans la relation précédente, il suffit d’estimer la pression au milieu du choc pour obtenir une 

estimation de l’épaisseur du choc. Un développement de Taylor sur ( , )p v s  pour un choc faible 

fournit le résultat suivant  
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On néglige le développement en s (entropie) car les termes en 
1( )s s  varient comme 3

1( )p p  (voir 

cours), et donc comme 3

1( )v v . 

Montrer que :         
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où on a déjà rencontré la dérivée fondamentale : 
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d. Montrer ainsi que l’on a : 
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e. Montrer que pour un choc faible : 
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f. Trouver finalement une expression pour l’épaisseur du choc : 
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g. Evaluer l’épaisseur de l’onde pour les différents fluides de la table ci-dessous pour un nombre de 

Mach de 1.2. 

Fluide  510 / ( )kg m s   v


 

5 210 /m s



      /a m s   

He 1.98 0 12.2 1'007.4 

H2 .887 32 10.8 1’304.4 

Air 1.85 0.6 1.57 343.3 

Eau 

liquide 

100.2 3.1 0.1 1’484 

Glycérine 134’000 0.4 109 1’895 

 

h. Pour des gaz raréfiés, la viscosité peut s’exprimer approximativement en fonction du parcours libre 

moyen  , de la masse volumique, et de la vitesse du son, selon : 
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Montrer ainsi : 

   

Cette formule simple représente (étonnamment) bien les données expérimentales. Une analyse plus 

détaillée ferait intervenir les transmissions de chaleur (et donc le nombre de Prandtl). 
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